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1. Introduction. Currently, the most effective method of selective excitation of the
vibrational degrees of freedom in molecular gases is direct absorption of resonant IR radia-
tion [}]. A fundamentally different method of selective excitation of molecular vibrations
has been proposed [2], based on multiquanta resonant transfer of vibrational energy to
impurity molecules from reservoir molecules where the latter have a nonequilibrium (non-
Boltzmann) distribution of vibrational energies. From the theoretical analysis in [2] it is
assumed that in collisions of impurity molecules A (which are modeled as harmonic oscillators)
with reservoir molecules B, g vibrational quanta of B transform into p quanta of A. Hence in
each oscillator A, transitions only occur between vibrational levels m and n whose difference
m—n is a multiple of p, and the whole system of harmonic oscillators splits up into p
groups. The number of molecules in each group is determined by the initial conditions and
in the stationary case a Boltzmann distribution is established in each group
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Here wg and wh are the frequencies of oscillators A and B; T is the temperature of the trans-—
lational degrees of freedom (the gas temperature). The effective vibrational temperature Th*
is determined by the nonequilibrium distribution yn of vibrational energies of the molecules
according to the formula
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Intense chemical reactions, IR radiation, and other types of selective excitation of the
reservoir molecules can strongly disturb their equilibrium distribution, without directly
affecting the other components of the mixture. Under these conditions when q > 1 the value
of TB* (and hence also T%) can differ significantly from the kinetic vibrational temperature
determined from the average stored vibrational energy [2]. In this way, redistribution of
vibrational energies in the reservoir (i.e., changes in the yp) can widely change the vibra-
tional temperature T¢ of the impurity. This leads to a new method of exciting molecular
gases, without direct absorption of IR radiation. We point out that the case of most prac—
tical interest is a three-quanta resonant transition p = 1, ¢ = 2 which is realized (within
an error of less than 1%) in collisions between such abundant molecules as OH-NO, NSO,
S0—Cl,, OH-0,, H.—CO.

In the present paper we discuss how chemical reactions in the impurity can be speeded
up by a distortion of the equilibrium vibrational distribution in the reservoir. Specific
calculations for the dissociation of diatomic molecules (modeled as anharmonic oscillators)
are carried out.

2. Stationary Vibrational Distribution. We study the staticnary vibratiomal distribu-
tion of the harmonic oscillators A in a non-Boltzmann reservoir of B molecules. The follow-
ing processes are taken into account in the analysis: (V—V') exchange from A-B collisions
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(p quanta of A transform into q quanta of B), (V-T) processes from A-B collisions, and also
(V-V) processes from A-A collisions.

The kinetic equation for the population density of the vibrational levels xn{t) of the
A molecules has the form

dz,, 2.1
% = Lyy: + L, (2.1
where Ly' is the collision integral for multiquanta (V-V') exchange [2]:
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Q;g is the probability of a (V-V') process

A(p) + B(0) -~ A(0) + B(q)
in a single collision, zgh is the collision frequency of a single A molecule with B molecules,
and L is the collision integral corresponding to the slower processes of (V-T) exchange in
collisions of A with B and (V-V) exchange in collisions of A molecules with each other. We
ignore (V-T) exchanges in A-A collisions since the concentration of A molecules is taken to
be small. Hence

L = Lyy + Lyy, (2.3)
where
Lyp = ZapProf(n -+ V2ot —[(n + 1)e® + nlz, + ne® z,,} (2.4)

is the collision integral for (V-T) exchange [3], O = hw,/kT, and P.o is the probability of
the single-quantum (V-T) tran31t10n n=1-=n=0. Finally
Lyy = ZaaQ {(n + 1 4 a)zap — (7 + No +n (1 +a)Y 2n + TlOCl-‘,,..l} (2.5)

is the collision integral for (V~V) exchange [3], a= 3 nr, is the average number of vibra-
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tional quanta per A molecule. An exact solution of (2.1) with (2.2)-(2.5) would be diffi-
cult. However, the problem can be simplified considerably if it is realized that (V-T) and
(V) processes proceed much more slowly than (V-V') exchange ((zghQpo)™* < (2gpPi10)™",
(zaaQ Y~*). The vibrational relaxation can then be treated as proceeding in two stages. In
the flrst stage, after a time of order tyy = (zapro)"1 the distribution (1.1) is established;
the factors Cr(0) are determined by the relative numbers of particles in each group at the
initial instant of time:

€, (0) = (1 —e %)™ go Zn1p (0)

The next relaxation stage is characterized by the time tyr = (zgpPi10)™* Or TYV = (zaaQYX)"l.
In this stage the slower (V-T) and (V-V) processes will result in a stationary distribution of
molecules according to groups {Cy(=)}. We study only the vibrational relaxation in the
second stage. Substitute the distribution (1.1) into (2.1). After summation of (2.1) within
each group (i.e., over 1) we obtain a set of kinetic equations for the distribution of par-
ticles according to group {Cr(t)}:

dCdt = Iyp 4+ Iyy, 1=0,1, ..., p—1; (2.6)
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where one must put C.; = Cp-;, Cp = Co. Equation (2.6) conserves the total number of A par-
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For very small concentrations of impurity A molecules (zgphPio > zaaQYX), when one may ignore
collisions among themselves, the distribution {Cr(t)} is formed by (V~T) processes after the
characteristic time ~tyT. In this case the stationary distribution {CVI(»)}, which is the

solution of the equation Iyr = Q, can differ strongly from the Boltzmann distribution when
O £ 0 at temperature T%

(o) =1 —e~". (2.9)

For higher concentrations of the impurity A molecules (tyy <« tyT) the (V-V) processes will
equalize all of the coefficients Cr, thereby forming a stationary distribution equivalent to
(2.9) after the characteristic time Tyy.

In the case of most practical interest, p = 2, Eq. (2.6) with the help of (2.7) and (2.8)
takes the form

dCy/dt = ty7 [CYT (00) — C,] + (20hv) 2 [(Cy — 1) — o2, (2.10)
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The solution of (2.10) has the form
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Note that Co(x) = 1 + ¢ — b; in the limiting cases ¢ € 1 and a > 1, Co(x) takes the forms
(2.9) and (2.11), respectively.

3. Dissociation in a Non-Boltzmann Reservoir. The nonequilibrium vibrational distri-
bution of the impurity molecules in the non-Boltzmann reservoir will significantly affect
the rate of dissociation. We first consider the case when only single-quantum transitioms
occur in the system of A oscillators. The kinetic equation for the vibrational population
densities xp in the quasistationary regime (it is assumed that the rate of dissociation is
slower than the rate of vibrational relaxation) has the form

—Kax, = Zap [P:L+1,n'tn+1 - (P:L.n+1 -+ P-:,n—-l) Ty + P‘—-l,n-rn—1}: (3.1)
n=01,...,s—1,

— Kgrs = 249 {P:—l,sxs—d - (Psfs—H + Ps*,s—l) 'Ts}v

where Kq = —(1/Ng)dNg/dt is the dissociation rate constant (DRC) and P:,nil are the probabili-
ties of single-quantum vibrational transitions (V-T) and (V-V') exchanges. It is also assumed
that dissociation occurs as a result of transitions from the last vibrational level s to the
continuum of vibrational energles with probability Ps s+1 in a 51ng1e collision. We ignore
recombination processes, i.e., dissociation is considered only in the initial stages. The
nethodology of solving equations of the type (3.1) is well known [3]; within small terms of
order v(1/zgh)Kq included we can write

n—1 n—1
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where

n . 1] ’” i<j, W1, i>j (3.4)
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xr(lo) = xoﬂ? is the stationary, unperturbed vibrational distribution. In the equilibrium

reservoir the condition of detailed balance is satisfied
P[P} == exp [~ (E; — E;)/kT], (3.5)

where E; is the vibrational energy of the A molecules in state i. Then Hg = exp [(Ej —
Es_1)/kT] and (3.2), (3.3) can be transformed into expressions for the population density of
the vibrational levels and the thermal DRC familiar from the theory of thermal dissociation
[31.

In the case of a non-Boltzmann reservoir, the condition of detailed balance (3.5) is not
satisfied in general, however (3.4) can be calculated, using the following reasoning. We
break up the vibrational spectrum of the molecule into two regions. We will assume that in
the low-level region (n <{m), resonant (V-V') exchange (p = 1, q > 1) plays the dominant role
((V—V) exchange is insignificant in this region because it does not alter the Boltzmann dis-
tribution established by the (V-V') exchange). In the high-level region (n>m), (V-T) ex-
change is dominant. Thus, the following relations are valid

1, n<m,
0,n>m,

*
Pn-—l,n = On—l,nan.m -+ Pn—l,m Opm = {
/, e
Qn—l,nlou,n—l = e ﬁ’ Pn—~1.w‘lpn n—~yp == €Xp [ ( i T ]1._1)/]{]']

Using the inequality Qp,n-i > Pp,n-: we obtain

exp[—Q(G+1—0] i, j<m,
Il = {exp[— (E; — En)kT —8(m — i +D),. i<m<j,
exp[— (£;— E;_))/kT], i, j>m.
For the stationary unperturbed vibrational distribution we have

[Naz?rl exp (— on), n<m,

(0)

Ip" == o E (3.6)
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where zy == Wi— _‘a'gf” . With the help of the inequality e < { the following is valid
@ n=g
£
Zy ~ > 0— == By (T
n=0
In the inner summation over i in (3.3) it is possible to carry out the summation from i = 0

8

without introducing large errors; the important contributions in ) (z,3P*) [}y, involve terms
fr

with i > m. We then obtain
v (T)\ (abPH—x 1)hleEi+1/kT—l. (3.7)

Ky - eem(1~r/rﬁ)/ J

In this same approximation, the DRC in the equ111br1um reservoir with temperature T has the
form

Kﬁi‘)) = 1/ {Z"(T) > (”athJrl 1)~1 El+1/kT:l (3.8)

The ratio of the DRC for the non—Boltzmann reservoir (3.7) to the equilibrium DRC (3.8) is

om{1-1/T5)

KRS = (ay (T)/2y (T2)) & (3.9)

. 3 0 .
From (3.9) it is clear that Kd/Ké ) > 1 even when T¢ only slightly exceeds T.
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Formulas like (3.9) were first obtained by Losev [4] and Kuznetsov [5] in the treatment
of the kinetics of thermal dissociation under conditions when the vibrational temperature
differs from the gas temperature.

The case of multiquanta resonmant (V-V') transitions (p > 1) is not different in prin-
ciple from the single-quantum case (p = 1). Dissociation hardly distorts the distribution in
the n < m region, therefore one can regard intense single~quantum (V-V') exchange together
with (V-T) and (V—V) exchanges as forming a stationary distribution of the type (1.1) for the
low level region, and thus the relative population density xg of level m will be fixed. It
is convenient to write the DRC in this case as

K, — 1,(0) En/kT > * —1 /
d=ZIye gﬂ(zabPi-H.i) exp (Eiy./kT) o

(®)

The population density xp ’ according to (1.1) is determined not only by the vibrational tem-
perature T%, but also by the number of particles in the group of levels into which level m
falls. For sufficiently high concentration of A molecules, (V-V) processes lead to the
Boltzmann distribution, as was shown above. The resulting quasistationary distribution (un~
perturbed by dissoclations) is equivalent to (3.6). In this case the ratio (3.9) of the DRC
in the non-Boltzmann reservoir to the equilibrium DRC remains valid. For arbitrary concen-
tration of the impurity A molecules

. a
KK = 2, (1) €,°m 077, (3.10)

Using the fact that C, > Cee—%®-n (this follows from the monotonicity of the distribution
(1.1)) the ratio (3.10), as well as (3.9), can exceed unity by several orders of magnitude.

Finally, we note that the increase in the dissociation rate due to resonant (V-V') ex-
change in the low vibrational levels of the impurity molecules allows in principle chemical
reactions to be conducted in the non-Boltzmann reservoir at very low gas temperatures; in
general these reactions would not proceed under normal conditions at these temperatures.
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